The Dibner Library of the History of
Science and Technology
SMITHSONIAN INSTITUTION LIBRARIES

A

SYNOPSIS

OF THE
ASTRONOMY
OF

By Edmund Halley, Savilian Profeffor of Geometry, at $0 x f$ ford; And Fellow of the Royal Society.

Tranjlated from the ORIGINA O , printed at Oxford.

$$
L O N D O N:
$$

Printed for Fobn Senex, next to the FleeceTavern, in Cornhill. 1705.

- $\quad-$

$$
\begin{aligned}
& 1
\end{aligned}
$$

$$
\begin{aligned}
& \therefore 0 \\
& \therefore+\frac{1}{4}+\square \\
& -
\end{aligned}
$$

$$
\begin{aligned}
& \text {, } \\
& \text { 3:. It Minn D DoA } \\
& \therefore 3 \therefore \quad \therefore
\end{aligned}
$$

[1]

A
 SYNOPSIS

OFTHE

Aftronomy of Comets.

THE ancient Egyptians and Chaldeans (if we may credit Diodorus Siculus) by a long Courfe of Obfervations, were able to predict the Apparitions of Comets. But fince they are alfo faid, by the Help of the fame Arts, to have prognofticated Earthquakes and Tempefts, 'tis paft all Doubt, that their Knowledge in thefe Matters, was the Refult rather of meer Aftrological Calculation, than of any Aftronomical Theories of the Cœelfial Motions. And the Greeks, who were the Conquerors of both thofe People, farce found any other fort of Learning amongit: them, than this. So that 'tis to the Greeks themfelves as the Inventors (and eipecially to the Great Hipparchus) that we owe this Agronomy, which is now improv'd to fuch a Heigth. But yet, amongft thefe; the Opinion of Arifotle (who wou'd have Comets to be nothing elfe, but Sublunary Vapours, or Airy Meteors)

[2]

prevail'd fo far, that this moft difficult Part of the Aftronomical Science lay altogether neglected; for no Body thought it worth while to take Notice of, or write about, the Wandring uncertain Motions of what they efteemed Vapours floating in the eftber; whence it came to pars, that nothing certain, concerning the Motion of Comets, can be found tranimitted from them to us.

But Senecia the Pbilooopher, having confider'd the Pbenomena of Two remarkable Comets of his Time, made no Scruple to place them amongt the Coclefial Bodies; believing them to be Stars: of equal Duration with the World, tho' he owns their Motions to be govern'd by Laws not as then known or found out. And at laft (which was no untrue or vain Prediction) he foretells, that there fhould be Ages fometime hereafter, to whom Time and Diligence fou'd unfold all thefe Myfteries, and who fhou'd wonder that the Ancients cou'd be ignorant of them, after Come lucky Interpreter of Nature had Thewn; in what Parts of the Hedivens the Coanets mander'd, what, and bow great they were. Yet almoft all the Aftronomers differ'd. from this Opinion of Seneca; neither did Seneca himfelf think fit to fet down thofe Phanomena of the Motion, by which he was enabled to maintain his Opinion: Nor the Times of thofe Appearances, which might be of ufe to Pofterity, in order to the Determining thefe Things. And indeed, upon the Turning over very many Hiftories of Comets, I find nothing at all that can be of Service in this Affair, before, A.D. 1337. at which time Nicephorus Gregoras, a Conflantinopolitan Hiforian and Afronomer, did

$$
[3]
$$

pretty accurately defcribe the Path of a Comet amongft the Fix'd Stars, but was too laxe as to the Account of the Time; fo that this mont doubtful and uncertain Comet, only defervies to be inferted in our Catalogue, for the fake of its appearing near 400 Years ago.

Then the next of our Comets was in the Year 1472, which being the fwiftelt of all, and neareft to the Earth, was obferv'd by Regiomantanus. This Comet (fo frightful upon the Account both of the Magnitude of its Body, and the Tail) mov'd Forty Degrees of a great Circle in the Heavens, in the Space of one Day; and was the firft, of which any proper Oblervations are come down to us. But all thofe that confider'd Comets, until the Time of Ticho Brabe (that great Reftorer of Aftronomy) believ'd them to be below the Moon, and fo took but little Notice of them, reckoning them no other than Vapours.

But in the Year 1577, (Ticho ferioully purfuing the Study of the Stars, and having gotten large Inftruments for the Performing Coeleftial Menfurations, with far greater Care and Certainty, than the Ancients cou'd ever hope for) there appear'd a very remarkable Comet ; to the Obfervation of which, Ticho vigoroully applied himfelf; and found by many juft and faithful Trials, that it had not a Diurnal Parallax that was at all perceptible: And confequently was not only no Aireal Vapour, but alfo much higher than the Moon; nay, might be plac'd amongft the Planets for any thing that appear'd to the Contrary; the cavilling Oppofition made by fome of the A 2. School.

[4]

School-men in the mean time, being to no Purpofe.

Next to Ticho, came the Sagacious Kepler. He having the Advantage of Ticho's Labours and Obfervations, found out the true Pbyfical Syftem of the World, and vaftly improv'd the Aftronomical Science.

For he demonftrated that all the Planets perform their Revolutions in Elliptick Orbits, mboJe plains pafs thro the Center of the Sun, obferving this Law, That the Area's (of the Elliptick Seftors, taken at the Center of the Sun, mobich he proved to be in the commori Focus of the Ele Elipfes) are almays proportional to the Times, in which the correfondent Elliptical Arches are defcrib'd. He dificover'd alro, That the Diftances of the Planets from the Sun are in the Sefquialtera Ratio of the Periodical Times, or (which is all one) That the Cubes of the Diftances are as the Squares of the'Times. This great Aftronomer had the Opportunity of obferving Two Comets, one of which was a very remarkable one. And from the Obfervations of thefe (which afforded fufficient Indications of an Annual Parallax) he coucluded, That the Comets mov'd freely thro' the Planetary Orbs, with a Motion not much different from a Rectilinear one; "but of what Kind be cou'd not then precifely determine. Next, He velius (a Noble Emulator of Ticho Brabe) following in Kepler's Steps, embraced the fame Hypothefis of the Rectilinear Motion of Comets, himfelf accurately obferving many of them. Yet, he complain'd, that his Calculations did not perfectly agree to the Matter of Fact in the Heavens: And was aware, that the Path of a Comzet masbent into a Curve Line tomards the

[5]

Sun. At length, came that prodigious Comet of the Year 1680 : which defcending (as it were) from an infinite Diflance Perpendicularly towards the Sun, arofe from him again with as great a Velocity.

This Comet, (which was feen for Four Months continually) by the very remarkable and peculiar Curvity of its Orbit (above all others) gave the fitteft Occafion for inveftigating the Theory of the Motion. And the Royal Obfervatories at Paris and Greenwich having been for fome time founded; and committed to the Care of moft excellent Aftronomers, the apparent Motion of this Comet was moft accurately (perhaps as far as Humane Skill cou'd go) obferv'd by Mrs. Cafini and Flamfteed.

Not long after, that Great Geometrician, the Illuftrious Nemton, writing his Mathematical Principles of Natural Philofophy, demonftrated not only that what Kepler had found, did neceflarily obtain in the Planetary Syfem; but alfo, that all the Phenomena of Comets wou'd naturally follow from the fame Principles; which he abundantly illuftrated by the Example of the aforefaid Comet of the Year 1680. fhewing, at the fame time, a Method of Delineating the Orbits of Comets Geometrically; wherein he (not without the higheft Admiration of all Men) folv'd a Problem, whofe Intricacy render'd it worthy of himfelf. This Comet he prov'd to move round the Sun in a Parabolical Orb, and to defcribe Area's (taken at the Center of the Sun) proportional to the Times.

Where

$$
[6]
$$

Whe refore \{following the Steps of fo Great a Man) I have attempted to bring the fame Method to Axithmetical Calculation; and that with defired Succefs. For, having collected all the Obfervations of Comets I could, I fram'd this Table, the Refult of a prodigious deal of Calculation, which, tho' but fmall in Bulk, will be no unacceptable Prefent to Aftronomers. For thefe Numbers are capable of Reprefenting all that has been yet oblerv'd about the Motion of Comets, by the Help only of the following General Table; in the making of which I fpar'd no Labour, that it might come forth perfect, as a Thing confecrated to Pofterity, and to laft as long as Aftronomy it felf.

The Aftronomical Elensents of the Motions in a Parabolick Orb of all the Comets that have beenhitherto duly obferv'd.

This Table needs little Explication, lince tis plain enough from the Titles, what the Numbers mean. Only it may be obferv'd, that the Peribelium Liftances, are eftimated in fuch Parts, as the Middle Diftance of the Earth from the Sun, contains 100000.

[8]

A General Table for Calculating the Motions of Comets in: a Parabolical Orbit:

mot.	$\frac{\left.\begin{array}{l} \text { Angul. à } \\ \text { peribelio. } \end{array} \right\rvert\,}{\mathrm{gr}^{\prime}}$	prodift. â Sole.	mot.	$\begin{gathered} \text { Ang. a } \\ \text { peribelio. } \end{gathered}$	prodiff. a Sole.
6					
62	70.36 .56		92		
63	71.17 .16	0.180188	93		- 28028
64	71.56 .56	0.183803	94		
65	72.35 .57	0.187404	95		
65		0.190978	96		
67	73.51 .59	0.194540	97		0.29223^{2}
68	74.29. 6	0.198085	98	8	0.295201
69	75.05.38	0.201614	99		22
70	75.4 L .35	0.205122	100	90.00 .00	0.301030
71	76.16.56	0.208612	102		- 306782
72	76.51 .43	0.212080	504	91.	0.312469
73	77.25 .57	0.215529	106		60
74		0.218963	108		87
75	78.32 .54	0222378	110	93.34 .52	-329042
76		0.225769	112		
77	79.37.45	0.229142	114	94.	0.339736
78	80. 9.23	0.232488	116	95.31 .22	0.344979
79		0.235809	118		0.350153
80	91.11.16	0.239127	12		. 355262
81	81.41 .310	0.242416	122		6306
82	82.11.19	0.245684	124		0.365284
83	82.40 .40	0.248933	126	98.28 .06	0.370200
84		0.252159	128	99.00.57	0.375052
85	83.38.4	0.255366	130	99,33.11	0.379842
86		0.258552	132	100. 4.43	576
8	84	0.261720	134	100.35.45	- 389252
		0.264865	136	101. 5.480	0.393868
89		0.267939	138	IOI.35.22	0. 398428
90			140	102. 4.1010	

[10]

$\left\lvert\, \begin{gathered} \text { Med } \\ \frac{\mathrm{mot}}{0} \end{gathered}\right.$		$\begin{aligned} & \text { Logar. } \\ & \text { pro. dift. } \\ & \dot{a} \text { solc. } \end{aligned}$	Med. mot. 0	Ang. a peribelio	Logar. pro dift. à sole.
14	02.32.41 0	0.407380	204		- 523406
	03.00.3 10	0.411784	208	114.9 .52	0.529705
146	$103.27 \cdot 470$	0.41613^{2}	212	I 4.4 I.23	0.535886
148	3.54.31	2420430	216	115.12 .02	0.541958
150	0420.430	0.424676	220	I15.41.51	0.547922
	104.46.22	0.428866	224	116.10 .52	
154	105.11 .33	0.433012	228	$116.39 \cdot 7$	0. 559538
156	105.36 .16	0.437110	232	117.6 .38	0.565199
158	106.00 .32	0.441164	236	117.33 .27	0.570762
160	106.24 .23	0.445178	240	117.59 .3 S	0.576233
162	106.47 .47	0.449144		$118.25 \cdot 5$	- 58:6:6
164	107.10 .44	- 453060	248	118.49 .57	0586912
166	107.33 .170	0.456936	252	119.14 .14	0.592122
16	107.55 .27	0.460772	256	r19.37.56	0.597252
170	108.17 .14	0.464208	260	120.1. 6	-602301
172	108.38 .37	0.468318	264	120.23 .44	0.607274
174	$108.59 \cdot 39$	0.472030	268	$120.45 .5^{2}$	0.612174
176		0.475705	272	121.7 .30	0.616998
178	109.40 .400	0.479340	276	121.28 .39	0.621750
180	11000.49	0.482937	280	$\underline{121.49 .22}$	0.626438
182	110.20 .20	0.486498	284	122. 9.38	-631056
28	Ir 0.39 .41	0.490022	288	122.29 .28	0.635608
180	I I $\cos 8.44$	- 493512	292	1224854	0.640098
88	I I. 1.17 .28	0.496965	295	$123.7 \cdot 57$	-6445'25
190	111.35 .55	0.500384	300	$123 \cdot 26.36$	0648893
192	111.54 .05	0.503769	310	124.11.4C	0.659559
194	112.11 .58	0.507121	320	124.5436	0.669880
196	112.29 .34	0.510441	330	125.3534	0.679876
198	112.46 .55	0.513729	340	$126.14 .44$	0.689568
	1 I 3.4 .00	0.51698	350	126.521	. 698970

[11]

$$
[12]
$$

The Conftruction and ve of the general Table.

As the Planets move in Elliptick Orbs, fo do the Comets in Parabolick ones, having the Sun in their common Foons, and defcribe equal Area's in equal Times. But now becaufe all Parabola's are fimilar to one another, therefore if any determinate Part of the Area of a given Parabola, be divided into any Number of Parts at Liberty, there will be a like Divifion made in all Parabola's, under the fame Angles, and the Diftances will be proportional : And confequently this one Table of ours will ferve for all Comets. Now, the Manner of the Calculation of this Table is thus: In the Fig.

Let S be the Sun, POC the Orbit of a Comet, P the Peribelion, O the Place where the Comet is 90 gr . diftant from the Sun, C any other Place. Draw the Right Lines CP, CS, and make $S T, S R$, equal to $C S$; and then having drawn the Right Lines CR, CT, (whereof the one is a Tangent, and the other a Perpendicular to the Curve) let fall CQ perpendicular to the $A x i=\mathrm{PSR}$.

[13]

Now, any Area, as COPS, being given, 'tis requir'd to find the Angle CSP, and the Diftance CS. From the Nature of the Parabola RQ is ever $=\frac{1}{2}$, the Parameter of the Axis, and confequently if the Parameter be put $=2$, then $R Q=1$. Let $C Q=z$; then PQ fhall $=$ $\frac{3}{4} z z$, and the Parabolick Segment COP $=\frac{1}{12} z z z$. But the Triangle CSP will $=\frac{1}{4} z$, and fo the Mixtilineal Area COPS $=\frac{1}{12} z^{3}-1-\frac{1}{4} z=a$, whence $z^{3}+3 z=12$ a. Wherefore refoiving this Cubical Equation, z or the Ordinate CQ will be known. Now, let the Area OPS be propos'd to be divided into 100 Parts; this Area is $\frac{1}{12}$ of the Square of the Parameter, and confequently $12 a$ is $=$ that Square $=4$. If therefore the Roots of thefe Equations $z^{3}+3 z=0,04: 0,08$: $0,12: 0,16,0 \%$. be fucceflively extracted. there will be obtain'd fo many: z or Ordinates. CQ reipectively, and the Area SOP will be divided into 100 Parts. And in like manner is the Calculus to be continued beyond the Place O. Now the Root of this Equation (fince RQ is $=1$) is the Tabular Tangent of the Angle CRQ, or ${ }_{2}^{1}$ the Angle CSP, and fo the Angle CSP is given. And RC, the Secant of the fame Angle CRQ, is a mean Proportional between RQ or Unity, and RT, which is the Double of SC, as is plain from the Conicks. But if SP be put $=1$, and fo the Latus Rectum $=4$ (as in our Table) then RT will be the Diftance fought, viz. the Double of SC in the former Parabola. After this manner therefore, I compos'd the foregoing Table, which ferves to reprefent the Motions of all Comets: For hitherto there has been none obferv'd, but comes within the Law's of the Parabola.

It remains now, that we give the Rules for the Calculation, and fhew the Way of determining the Place of a Comet feen, by thefe Numbers. The Velocity of a Comet moving in a Parabola, is every mbere to the Velocity of a Planet defcribing a Circle about the Sun, at the Jame Diftance from the Sun, as $\sqrt{ } / 2$ to I. as appears from Cor. 7. Prop. 16. Lib. 1. of the Princip. Phil. Nat. Math. If therefore a Comet in its Peribelium were fuppos'd to be as far diftant from the Sun as the Earth is, then the Diurnal Area which the Comet wou'd defcribe, wou'd be to the Diurnal Area of the Earth, as $\sqrt{ } 2$ to I. And confequently, the Time of the Annual Revolution, is to the Time in which fuch a Comet wou'd defcribe a Quadrant of its Orbit from the Peribelium, as 3.14159 , σc. (that is the Area of the Circle) to $\sqrt{9}_{9}^{8}$. Therefore the Comet wou'd defcribe that Quadrant in rog Days, 14 Hours, 46 Minutes; and fo that Parabolick Area (Analogous to the Area POS) being divided into 100 Parts, to each Day there wou'd be alotted 0.912280 . of thofe Parts; the Log. of which, wiz. 9.960128 , is to be kept for continual Ufe. But then the Times in which a Comet, at a greater or lefs Diftance, wou'd defcribe fimilar Quadrants, are as the Times of the Revolutions in Circles, that is, in the Sefquiplicate Ratio of the Diftances: And fo the Diurnal Area's, eftimated in Centefimal Parts of the Quadrant (which Parts we put for Meafures of the mean Motion, like Degrees) are in each, in the Subfefquialtera Proportion of the Diftance from the Sun in the Perihelion.

There

[15]

Thefe neceffary Things premis'd, let it be propos'd to compute the apparent Place of any one of the mention'd Comets, for any Given Time. Therefore,

1. Let the Sun's Place be had, and the Log. of its Difance from the Earti.
2. Let the Difference between the Time of the $\mathrm{Pe}-$ rihelion, and the Time given, be goten, in Days and Decimal Parts of Days. To the Log. of this Number, let there be added the conft ant Log. 9.960 28, and the Complement Aritbmetical of the $\frac{3}{2}$ of the Log. of the Diftance in the Perihelium from the Sun: The Sumwill be the Log. of the Mean Motion, to be fought in tbe firft Column of the General Table.
3. With the Mean Motion let there be taken the correfpondent. Angle from the Perihelium, in the Table, and the Log. for the Diftance from the Sun: Then in Comets that are Direct, add, and in Retrograde ones fubftrait; if the Time be after the Perihelium, the Angle thus founa', to or from the Place of the Perihelion; or in Direct Comets, Fubftract; and in Retrograde ones, add; if the Time be before the Perihelion, the forefaid Angle to or from the Place of the Perihelion; and fo we Shall have the Place of the Comet in its Orbit. And to the Log. found for the Diftance, let there be added the Log. of the Diftance in the Perihelion, and the Sum will be the Log. of the true Diftance of the Comet from the Sum.
4. The Place of the Node, together with the Place of the Comet in its Orbit, being given, let the Difance of the Comet from the Node be found; then, the Inclination of the Plane being given, there will be given alfo (from the common Rules of Trigonometry) the Comet's Place reduced to the Ecliptick, the Inclination or Heliocentrick Latitude, and the Log. of the curtate Diftance.

5. Froms

[16]

5. From the fe Things given (by the very fame Rules that we find the Planets Places, from the Sun's Place and Diftance given) me may obtain the Apparent or Geocentrick Place of the Comet, logethen with the Apparent Latitude. And this it may be worth while to illustrate by an Example or two.
EXAMPLE I.

Let it be required to find the Place of the Comet of the Year 166_{5}^{4}; March $I^{\mathrm{d}}, 7^{\text {h }}$, $0^{\prime \prime}$, P, M. London. That is. $96^{\mathrm{d}}, 19^{\mathrm{h}}$, 81, after the Perihelion, which bappen'd Novemb. $24^{\circ}, 11^{h}, 52^{\prime}$.

```
Log. Diff. Perihel. O. OIIO44
Log. Sefquialt. 0.016566
Comp. Arith. \(\quad 9983434\)
9. 960128
Log. Temp. \(\quad 1.989862\)
Log. Med. Mot. \(\quad \frac{1.929424}{85.001}\)
Medius Motus
Perihel. \(\Omega \quad\) 10.4I. 25
Ang. Correfp. \(\frac{83 \cdot 38.05-}{37.30}\)
Comet. in Orb. Ob 3703020
Afcend. Nod. II \(\frac{21.14 .00}{34.10 .40}\)
\(\begin{array}{ll}\text { Red. ad Eclip. } & 3219.05 \\ \text { Com. Helios. } 8 \quad 18.54 .55\end{array}\)
Incl. Bor.
15. 46.50
Log. pro diff.
0. 255369
Log. Perihel. 0 orion
Coffin. Incl.' \(\quad 9.990754\)
Log. diff. Curt 0. 257167
Log. diff. © ... 9. 997918.
com virus (o) H 29.18 .45
Lati Vila s. 36.15
29. 18. 30
EXAM:
```


$[17]$

Example II.
Let it be require' ${ }^{2}$ to find the Place of the Comet of the Year 1683 , July $23^{\circ}, 13^{h}, 35^{\prime}$, P.iM. London: Or, $13^{\mathrm{h}}, 4 \mathrm{O}^{\prime}$ Equat. 'Time. That is, $21^{\mathrm{d}}, 10^{\mathrm{h}}, 50^{\circ}$ after. the Perihelion.

At the Infant of Time fecified in the frt Example, 'twas obferv'd (at London) that the Comet applied to the Second Star of Aries; fo that it was found to be 9^{\prime} more Northerly, C
and

$$
[18]
$$

and 3^{\prime} to the Eaft, according to Mr. Hook's Obfervation. But at that of the Second Example, I my felf (near London, with the fame Inftruments whereby I formerly obferv'd the Southern Conttellations) found the Place of the Comet to be $\mathbf{S B}^{5}, 5^{\circ}, 11^{\prime \prime}:$, and $28^{\circ}, 52^{\prime}$ North Latitude, which agreed exactly with the Obfervation made at Greenwich almoft the very fame Moment.

As for the Comet of the Year 1680, which came almoft to the very Sun it felf (being in its Peribelion, not above ${ }_{3}^{\frac{1}{5}}$ of the Semi-Diameter of the Sun diftant from the Surface of it) fince the Latus Rectum is fo very fmall, could hardly be contained within the Limits of the General Table, becaufe of the exceffive Velocity of the Mean Motion. Therefore in this Comet, the beft Way is (after the Mean Motion is found) to get from thence (by the Help of the foregoing Equation $z^{3}+3 z=\frac{4}{100}$ of the Mean Motion) the Tangent of Half the Angle from the Peribelion, together with the Log. for the Diftance from the Sun. Which Things being given, we are to proceed by the fame Rules, as in the reft.

After this Manner therefore, the Aftronomical Reader may examine thefe Numbers, which I have calculated, with all imaginable Care, from the Obfervations I have met with: And I have not thought fit to make them publick before they have been duly examin'd, and made as accurate as 'twas poffible, by the Study of many Years. I have publifh'd this Speci-: men of Cometical Aftronomy, as a Prodromus of a defigned future Work, left, happening

$$
[19]
$$

to die, thefe Papers might be loft, which every Man is not capable to retrieve, by reafon of the great Difficulty of the Calculation. Now, it may not be amifs to put the Reader in mind, That our Five firft Comets, (the Third and Fourth obferv'd by Peter Apian, the Fifth by Panlus Fabricius) as alfo the Tenth feen by Maftiin, if I miftake not, in the Year 1596. are not fo certain as the reft; for the Obfervations were made neither with fit Inftruments, nor due Care, and upon that Account are difagreeing with themfelves, and can by no means be reconcil'd with a regular Computation. The Comet which appear'd in the Year 1684. was only taken Notice of by Blanchinus, who obferved at Rome: And the laft, which appear'd in the Year 1698. was feen only by thofe at P_{a} ris, who determin'd its Courfe in a very uncommon Way. This Comet was very obficure; and, altho' it mov'd fwift, and came near enough our Earth; yet we, who are wont to be curious enough in thefe Matters, faw nothing of it. For want of Obfervations I have left out of the foregoing Catalogue, thofe Two remarkable Comets which have appear'd in this our Age, one in November, in the Year 1689. the other in February in the Year 1702. For they directing their Courfestowards the Southern Parts of the World, and being fcarce confpicuous here in Europe, met with no Obfervers capable of the Bufinefs. But, if any one fhall bring from India, or the Southern Parts, an accurate Series of requifite Obfervations, I will willingly fall to work again, and undergo the Fatigue of reprefenting their Orbits in Numbers, as I have done the relt.
C. 2

By

$$
[20]
$$

By comparing together the Accounts of the Motions of thefe Comets, 'tis apparent, their Orbits are difpos'd in no manner of Order ; nor can they, as the Planets are, be comprehended within a Zodiack, but move indifferently every Way, as well Retrograde as Direct; from whence it is clear, they are not carry'd about or mov'd in Vortices. Moreover, the Diftances in their Peribelium's are fometimes greater, fometimes lefs; which makes me fufpect, there may be a far greater Number of them, which moving in Regions more remote from the Sun, become very obfcure; and wanting Tails, pais by us unfeen:

Hitherto I have conlider'd the Orbits of Comets as exactly Parabolick; upon which Suppofition it wou'd follow, that Comets being impell'd towards the Sun by a Centripetal Force, defcend as from Spaces infinitely diftant, and by their Falls acquire fuch a Velocity, as that they may again run off into the remoteft Parts of the Liniverfe, moving upwards with fuch a perpetual Tendency, as never to return again to the Sun. But fince they appear frequently enough, and fince none of them can be found to move with an Hyperbolick Motion, or a Motion fwifter than what the a Comet might acquire by its Gravity to the Sun, 'tis highly probable they rather move in very Excentrick Orbits, and make their Returns after long Periods of Time: For fo their Number will be determinate, and, perhaps, not fo very great. Befides, the Space between the Sun and the fix'd Stars is fo immenfe, that there is Room enough for a Comet to revolve, tho' the Period of its Revolution be valtly long.

[21]

Now, the Latus Rectum of an Ellipfis, is to the Latus Rectum of a Parabola, which has the fame Diftance in its Peribelium; as the Diftance in the Aphelium in the Elliphss, is to the whole Axis of the Ellipfis. And the Velocities are in a Subduplicate Ratio of the fame: Wherefore in very Excentrick Orbits this Ratio comes very near to a Ratio of Equality; and the very fmall Difference which happens on Account of the greater Velocity in the Parabola, is eafily compenfated in determsining the Situation of the Orbit. The principal Ufe therefore of this Table of the Elements of their Motions, and that which induced me to conftruct it, is, That whenever a new Comet fhall appear, we may be able to know, by comparing together the Elements, whether it be any of thoie which has appear'd before, and confequently to determine its Period, and the Axis of its Orbit, and to foretell its Return. And, indeed, there are many Things wihich make me believe that the Comet which Apian obferv'd in the Year I531. was the fame with that which Kepler and Longomontanus took Notice of and defcrib'd in the Year 1607. and which I my felf have feen return, and obferv'd in the Year 1682. All the Elements agree, and nothing feems to contradict thismy Opinion, hefides the Inequality of the Periodick Revolutions: Which Inequality is not fo great neither, as that it may not be owing to Phyfical Caufes. For the Motion of Saturn is fo difturbed by the reft of the Planets, efpecially Fupiter, that the Periodick Time of that Planet is uncertain for fome whole Days together. How much more therefore will a Comet be fubject to fuch like Errors; which rifes

$$
[22]
$$

almoft Four times higher than Suturn, and whofe Velocity, tho' encreafed but a very little, would be fufficient to change its Orbit, from an Elliptical to a Parabolical one. This, moreover, confirms me in my Opinion of its being the fame; that in the Year 1456. in the Summer time, a Comet was feen pafling Retrograde between the Earth and the Sun, much after the fame Manner: Which, tho' no Body made Obfervations upon it, yet from its Period, and the Manner of its Tranfit, I cannot think different from thofe I have juft now mention'd. Hence I dare venture to foretell, That it will return again in the Year 175^{8}. And, if it fhould then return, we fhall have no Reafon to doubt but the reft mult return too: Therefore Aftronomers have a large Field to exercife themfelves in for many Ages, before they will be able to know the Number of thefe many and great Bodies revolving about the common Center of the Sun; and reduce their Motions to certain Rules. I thought, indeed, that the Comet which appear'd in the Year 1532. might be the fame with that obferv'd by Hevelius in the Year 1661. But Apian's Obfervations, which are the only ones we have concerning the firlt of thefe Comets, are too rude and unskilful, for any thing of Certainty to be drawn from them, in fo nice a Matter. I defign to treat of all there Things in a larger Volume, and contribute my utmoft for the Promotion of this Part of Aftronomy, if it fhall pleafe God to continue my Life and Health.

In the mean time, thofe that defire to know how to conftruct Geometrically the Orb of a Comet, by Three accurate Obfervations given, may

[23]

may find it at the End of the Third Book of Sir Ifaac Newton's Principles of Natural Philofophy, entituled De Sy/temate Mundi, in the Words of its renowned Inventor. Which have fince been more fully explained by my very worthy Collegue Dr. Gregory, in his Learned Work of Aftronomia Phyfica O Geometrica.

One Thing more perhaps it may not be improper or unpleafant to advertife the Aftronomical Reader; That fome of thefe Comets have their Nodes fo very near the Annual Orb of the Earth, that if it fhall fo happen, that the Earth be found in the Parts of her Orb next the Node of fuch a Comet, whilf the Comet paffes by; as the apparent Motion of the Comet will be incredibly fwift, fo its Parallax will become very fenfible; and the Proportion thereof to that of the Sun will be given. Wherefore fuch Tranfits of Comets do afford us the very beft Means, though they feldom happen, to determine the Diftance of the Sun and Earth: Which hitherto has only been attempted by Mars in his Oppofition to the Sun; or elfe Venus in Perigao; whofe Parallaxes though triple to that of the Sun, are fcarce any ways to be perceived by our Inftruments; whence we are ftill in great lincertainty in that Affair. This ufe of Comets was the ingenious Thought of that excellent Geometrician Mr. Nicolas Facio. Now the Comet of 1472 , had a Pa rallax above Twenty times greater than the Sun's. And if the Comet of 1618 , had come down, about the Middle of March, to his defcending Node: Or if that of 1684 , had arrived a little fooner at its afcending Node ; they would have been yet much nearer the

Earth,

$$
[24]
$$

Earth, and confequently have had more noteble Parallawes. But hitherto none has threaten'd the Earth with a nearer Appulfe, than that of 1680 . For by Calculation I find, that Noverab. I°, $\mathrm{I}^{\text {h }}, \sigma^{\prime}, P . M$. that Comet was not above the Semi-diameter of the the Sun to the Northwards of the Way of the Earth. At which Time, had the Earth been there, the Comet would have had a Parallax equal to that of the Moon, as I take it. This is fpoken to Aftronomers: But what might be the Confequences of fo near an Appulfe; or of a Contact ; or, laftly, of a Shock of the Cœelftial Bodies, (whieh is by no treans impolible to come to pafs) I leave to be difculs'd by the Studious of Phyfical Matters.

$$
F \quad I \quad N \quad I \quad S
$$

Advertifement.

THE General Laws of Nature and Motion, with their Application to Mechanicks. Alfo, The Doctrine of Centripetal Forces, and Velocities of Bodies, defcribing any of the Conick Sectio ons. Illuftrated with Variety of fufful Theorems and Problems, accommodated to the Ule of the younger Mathematicians. By Mr. Humptory Dition. Sold by Fobn Senex, next the Fleece-Tavern, in Cornbill: Where any Gentleman may he furnifh'd with all Sorts of Mathematical Books, Maps and Inftruments.

A

COMPENDIOUS VIEW

> OF THE

ASTRONOMY of COMETS.

CONTAINING

Likewife an Accurate Calculation, in the Curve of an Ellipfis, of that whofe Appearance is thortly expected.

Written in LATIN

By EDMUND HALLEY, Late ROYAL ASTRONOMER.

And inferted in the Quarto Edition of his ASTRO. N O MIC A L T A B L E S, publifhed by W. Innys, 1749 ; which, as the Patent recites, were more than 30 Years in Printing.

Tranflated by G. I. Gen.t.

L $\quad 0 \quad N \quad D \quad O \quad N$:
Printed for J. Millan, near Whiteball. MDCCLVII.

$$
\begin{aligned}
& \pm
\end{aligned}
$$

-
-

k-

TOTHE

R E A D E R.
"HE following Treatife having been tranflated fome time fince, for the Information of a few Friends, was not intended to be made Public, but many fuperficial pamphlets on the fame Subject having lately made their appearance, which can give very little Information to their readers, and as many would be glad to know what Dr. Halley has really faid himfelf on the Subject, were not the book in which it is contained of a large price, and the Language in which it is wrote, not generally underftood. Thefe confiderations induced the Tranflator to this publication, that every one might, at a fmall price, and with little trouble in reading, have an infight into a Subject, in itfelf extreamly curious, abftracted from

$$
\text { A } 2
$$

any of the expected Comet's meeting the Earth on the 12 th of May; which was never furmifed by Dr. Halley, and inferted by Mr. Martin in his Cometarium, for no other purpofe that I can conceive than to create a larger demand, many people fearching eagerly after any thing ftrange or uncommon.

A Com-

[5]

EDMUND HALLEY was born in Licndon Nov. 8, 1656, and brought up at St. Paul's Scnool, under Dr. Tiomas Gale. As the Stars at the South Pole are deficient in Ptoiomy and Tyclo's Catalogues, the Ancients feldom failing beyond the Equator, and Tycho living too far North to obferve them, Mr. Wiliamfon, Secretary of State, and Sir Forias Moor, grand Mafter of the Artillery, applied to King Charles II. to fend him to St. FFelena, to fupply their Defects: Being furnifhed with every Thing neceffary, he fer out in November, 1676 , and arrived at St. Helena in three Months, where he performed his Project, and returned to London about the Autumn 1678 ; in 1679 he pubiifhed his Catalogue of Southern Stars; among other Novelties it contained the Royal Oak, in which King Charles II. hid himfelf after the Defeat at Worcefter, with this Infcription, Robur Carolinum, in prpetuam, fubillius latebris fervati Caroli Secundi Magnce Britannice Regis memoriam, in Ccelum meritò tranflatum: That is, Charles's Oak defervedly tranflated into Heaven, for fheltring under its Branches Cbarles II. King of Great Britain; from which it has been inferred, that Aftronomers as well as Poets can find opportunities of thanking their $\mathrm{Be}-$ nefactors; he died J̌an. 25, 1742.

A Compendious View of the Astronomy of Comets.

THE antient Egyptians and Cbaldeans, on the Teftimony of Diodirus Sicuius*, had learned, by a long Series of Obfervations, to foretel the appearing of Comets; but as they are mentioned forefeeing Tempefts and Earthquakes by the fame Skill, it is beyond doubt, that their knowledge in thefe things might be more properly attributed to Aftrology and Fortune-telling, than to any Aftronomical Theory of their Motions; and in truth the Greeks, who fubdued both ψ thefe Nations, farce found any other literature among them, infomuch that the Aftronomy which the Moderns have fo much improv'd, may be faid to have been invented by the Greeks themfelves, efpecially the great Hipparchus ${ }_{+}^{+}$.

* Diodorous wrote in Greek 40 Books, containing the affairs of the Egyptians, Aljyrians, Medes, Perfians, Greeks, Romans, Cartbagenians and others, 15 of which have only come to our Hands; he was bern at Agyrium in Sicily, and lived in the time of Julius and Augufius Ciafar, 60 Years before Chrift.
+ Alexander the Great fubdued all Afia, having defeated Darius Codomannus, about 325 Years before Cbrif, and about 60 Years before the firf War between the Romans and Cartbagenians.
\ddagger Hipparchus, a Rhodian, was the firft among the Greeks who made a Catalogue of the Stars; he lived about 120 Years before Cbrif, and his Obfervations are preferved by Ptolomy, in

[7]

Yet the Opinion of Arifotle *, who would not allow Comets to be any thing but aerial Vapors, extending not'fo high as the Moon, prevailed fo much among thefe very People, that this part of Aftronomy, the moft abftrufe of any, remained entirely neglected; for no one thought it worth while to obferve and commit to writing, the vague and uncertain Tracts of Vapors floating in the Air: And this has been the Reafon that nothing certain has been tranfmitted to us concerning the Motion of Comets.

But Seneca \downarrow the Philofopher having confidered the Phænomena of two remarkable Comets of his own Time, makes no fcruple to rank them among heavenly Bodies, affirming they are Planets which will endure as long as the Univerfe; tho' he ac-
his Almageft, Book 7. This Ptolomy's Name was Claudius, born at Pelufum in Egypt, and flourifhed in the Reign of Marcus Antoninus, 140 Years after Cbrif, fally taken by fome for one of the Kings of Egypt; his Work was originally entituled
 lection of Problems in Geometry, Geography, Ecc. the Arabians tranflated it about the Time of Charlemagne, Anno 800, and adding the Particle al to the Word M $\varepsilon \gamma \leqslant 5$, called it in their own Language Almagift, fince which it has bore that Name.

* Arifotle, Preceptor to Alexander the Great, born at Stagyra, a Town in Macedonia, 384 Years before Cbrift; his Works are extant both in Greek, and tranflated into Latin; he is reported to have faid on his Death-bed, Fcedè bunc mundum entravi, anxius vixi, perturbatus egredior caufa caufarum mifercre mei: That is, I was conceived in Uncleannefs, have lived in Anxiety, and die in greater: Supreme Caufe of all Things have Mercy on me.
+ Lucius Anncous Seneca, called the Philofopher, to diftinguif him from his Father the Rbetorician, born at Corduba in Spain, a little before the End of Auguftus's Death; he was Preceptor to Nero, who, hearing that he was privy to a Confpiracy againft him, ordered him to put himfelf to death, which he did by letting himfelf Blood in the Year of Cbriff 65 .
know-

[8]

knowledges their Niotions are regulated by Laws then unknown; and prophefies far from falfely, that the diligence and experience of fome future Age would difover thefe Myfteries; and wonder that the Antients were ignorant of them: After that fome Interpreter of Nature hould demonftrate in what Regions of the Firmument Comets move, fhewing both their Magnitudes and Qualities. Yet the greateft part of Aftronomers have thought differently from Senieca; and he himfelf has not tranfmitted to us the Phænomena of the Motions on which his Opinion is grounded, nor the Time when he obferv'd them, all which would have been of Ufe to the Moderns to determine this Controverfy.

And after fearching into many Hiftories of Comets, I find none than can be of any Ufe in this affair before the year of Chrift 1337, when Ni cephoras Gregoras, an Hiftorian and Aftronomer at Comfantinople, defcribes to us accurately enough the Tract of a Comet among the fixt Stars, but he is very remifs as to the time of its appearance, on which account it merits a place in the Catalogue we fhall give hereafter, no otherwife than that it is very probable it appeared about 400 Years ago.

After this, in the year 1742, Regiomontanus * obferved a Comet, the fwifteft and neareft the Earth of any; which tho' large in bulk, and having a terrible Tail, in one day paffed thro' 40 degrees of a great Circle of the Heavens; and this is the firf Comet concerning which proper Obfervations

[^0]have
have been tranfmitted us. However, all perfons who have confidered Comets before the time of Tycho Brabe, the great Reftorer of Aftronomy, imagining they were nearer the Earth than the Moon, little regarded them, efteeming them as Vapors.

But in '1577, Tycho * applying affiduoufly to the ftudy of the Stars, and having collected large Inftruments for meafuring arcs of the Heavens with greater accuracy than the ancients could pretend to, there appeared a Comet confpicuous enough, which Tycho obferved ftrictly, and found by many and juft Experiments, that it had no fenfible diurnal Parallax \dagger_{B}, and confequently was fo B far

* Tycho Brabe, born at Knudforp in Denmark, December 1546, died Nov. 1601, at Prague, aged 54 Years, 9 Months, 19 Days. He was a Knight, and made Obfervations on the Stars a long time at Uraniberg, in the Ine of Huen, in the Sound, having fabricated curious inftruments for that purpofe at the expence of Cbrifian III. King of Denmark. When he left Denmark he was entertained at the Court of the Emperor Radolph: He had great intimacy with William Prince of Hefe: His works compleat were publifh'd at Frankfort, 1648.
+ What is meant by Parallax is, that fuppofing the Comet was obferved from Uraniberg, and its diftance from fome fix'd Star noted: Again, fuppofe the fame Comet was obferved from Prague, and its diftance from the fame fix'd Star noted likewife; then if thefe two diftances from the fix'd Star were the fame in appearance, then would the Comet be faid to have no fenfible Parallax, which Aftronomers conclude to be a Demonftration drawn from the Laws of Optics, that they are higher than the Moon; for that Planet, view'd from thofe two places before-mentioned, wou'd appear to have two different diftances from the fame fix'd Star.

Sir lfaac Newton takes another method of fhewing that Comets are folid bodies, and not vapors; by inftancing, that the Comet of 1680 came within a fixth part of the Sun's Diameter to his Surface, and therefore might, if a rolid body, have contracted a heat 2000 times greater than red-hot iron; now had the Comet been vapor alone, the whole muft have

[10]

far from being a Vapor, that it was much higher than the Moon; and in fhort, that no reafon could be given that it might not be a Planet, notwithftanding the contrary affertions of the Pretenders to Learning of thofe Times.

The fagacious Kepler * foliowed, and by the help of Tycho's labours, found out the true and natural Syftem of the World, and immenfely increafed the Science of Aftronomy: Shewing, that all the Planets revolv'd in Planes paffing thro' the Center of the Sun, defcribing elliptic Curves in fuch manner, that equal Arex of elliptical Segments (the Center of the Sun being plac'd in the Focus of the Ellipfis) are always defcribed in equal times, in which the Areas are defcribed. He alfo found, that the Cubes of the diffances of Planets from the Sun were as the fquares of their periodic times. Two Comets appeared to this Nilful Artift one more remarkable than the other: And from the Obfervations Kepler made on thefe, and by many Difcoveries of an annual Parallax; he concluded, that
been difperfed by fo intenfe a heat. He concludes therefore, that Comets are folid bodies, and that their tails are vapors, emitted from them by the great heat of the Sun, as fteem is from water when heated by a great fire, and all the appearances agree perfectly with this fentiment.

* Fobn Kitpler, born at Wial, in the country of Wirtemberg, in 157 I . Tycho Brabe having fetted in Bobemia, and obtained all manner of conveniences from the Emperor Rodolph for perfecting Aftronomy, prevaild on Kepler to leave the Univerfity of Glatz and to come to him, which he did with his family and library in 1600; but Tycho dying in r601, Kepler enjoyed the title of Mathematician to the Emperor all his life, who ortered him to finifh the Tables of Tycho Brabe, which were to becalled Rodolphine, which he publim'd in 1627. He died at Ratijbon, where he was felliciting the arrears of his penfion.

[II]

Comets were freely carry'd about between the Orbits of Planets, with a motion not very different from rectilinear, but which he could not then determine.

Hevelius *, alfo Tycbo's rival, following the tract of Kepler, embraced the hypothefis of a rectilinear motion; but notwithftanding he was an acute obferver of many Comets, yet he complains that his calculation did not correfpond entirely with nature, and fufpected that Comets defcribed a curve round the Sun.

At length the prodigious Comet of the year 1680 appeared in the heavens, feemingly defcending perpendicularly towards the Sun, and afterwards afcending with the fame velocity therefrom; and having been feen for four months together, and difcovering a peculiar and remarkable curvature of its Orbit, was more proper than any to give light to the theory of its motion. And the Royal Obfervatories of Paris and Greenwich having been long fince erected, and intrufted to the care of the moft eminent Aftronomers, it fo fell out, that the apparent motion of this Comet was obferved by Cafini 中 and Flamtead §, with as much accuracy perhaps as mortals are capable of.

[^1]
[12]

Not long after which, Neroton *, the chief of Geometers, having compofed his Mathematical Principles of Natural Philofophy, he not only demonftrated, that the Difcoveries of Kepler muft neceffarily have a place in the Planetary Syftem, but that all the phœnomena of Comets muft neceffarily follow from the fame principles, which he hath fufficiently illuftrated by an example from the aforefaid Comet of the Year 1680, and fhewed the manner of conftructing Geometrically, or with exactnefs, the Orbits of Comets: To the wonder of all men folving a moft difficult problem, and worthy of fo great an Oedipus \uparrow. He
acquainted with Mr. Newton, Dr. Barrow, and Dr. Wroe: Sir Fonas Moor having ftrongly recommended him to king Charles the Second, and the Duke of York. March the 4 th, 1674, he brought Mr. Flamfiead a warrant to be king's Aftronomer, with the falary of 1001 . per Anuum, the Eafer following he was ordained. In 1684 he was prefented to the living of Burforw in Surry, which he enjoyed till he died, Anno 1719, aged 83; his Hiftoria Celeffis Britannica was publifhed Anno 17^{225}.

* Newton, Sir IJaac, was born at Wool/frop, in the county of Lincoln, on Chrifmas-day, Anno 1642 : He was defcended from the elder branch of Sir Fobn Newton, Baronet. In 1696, Mr. Montague, then chanceilor of the Exchequer, obtained of the king for him the office of warden of the Mint, and three years after he was appointed mafter of the Mint. In 1701 he was elected a fecond time member of parliament for the Univerfity of Cambridge. In 1703, he was elected Prefident of the Royal Society, and continued in the chair 23 years, till his death. In 1705 he was knighted by queen Anne: He died March 20, 1726.
+ Oedipus, according to the fabuicus hiffory, was the fon of Laius and Focafta, king and queen of Thebes; his father being informed by the oracle that his fon would kill him, gave him to his fhepherd to be flain, but he being moved with pity, only left him in a defert place, where he imagined he would die with hunger; but he was taken up by one Phorbas, belong-
proves this Comet to have moved round the Sun in an Orbit apparently parabolical in fuch manner, that the arex, reckoning from the center of the Sun, are proportionable to the times.
Purfuing the fteps of fo great a man, I have endeavoured to accommodate an arithmetical calculation thereto, and not without fuccefs; for having collected from all parts the obfervations made on Comets, I obtained the following Table, the fruit of immenfe calculations, a fmall but acceptable prefent to Aftronomers; for thefe numbers are fufficient to defrribe accurately every thing that has hitherto been difcovered concerning Comets, by the help alone of a General Table that accompanies it ; in conftructing which I have fpared no pains to render it perfect, and I dedicate it to Pofterity, imagining it will laft as long as the Science of Aftronomy.

This Table, which was intended for no perfons unkilled in the Mathematics, contains a Lift of
ing to Polybius, king of Corinth, and brought to that place, where the queen brought him up as her own fon; but he afterwards finding that he was not her child, went to feek his father at Phocis, and there being a fedition in that city, he unwittingly flew his father; after which Creon, the fucceeding king, proclaimed over all Greete, that any man who could expound the Sphynx's riddle, fhould marry his fifter Focafta; the riddle was, What animal is that which in the morning goes on four feet, at noon with two, and at night with three? Oedipus undertook it, and faid it was a man, who in his infancy crawls on hands and feet or on all fours, in his middle age walks on two legs, and when he is old ufes a ftaff, or goes on three; whereupon he obtained the prize, and had two children by his mother, Eteocles and Polynices, who flew one another, and the new herfelf. Hence unfortunate people are faid to be of the race of Oedipus, and the refolvers of difficult problems to be an Oedijus himfelf.

24 Comets, beginning from the year 1337, and ending in the year 1698.

Now three only of this number have reference to the Comet expected to appear about the end of the year 1758 , or beginning of the next, and are as follows.

The Comet of had its Orbit Its neareft diftance the year inclined to the Sun was

 deg. min. fec. deg. min. fec.of $\left\{\begin{array}{l}1531 \\ 1607 \\ 1608\end{array}\left\{\begin{array}{rrr}17 & 56 & 0 \\ 17 & 2 & 0 \\ 17 & 56 & 0\end{array}\right\} \begin{array}{llll}5 & 1 & 39 & 0 \\ 0 & 2 & 16 & 0 \\ 5 & 2 & 45\end{array}\right.$

Having finifhed the above Table, I fufpected from the fimilar fituation of the Planes and Perihelions, that thefe three Comets were one and the fame; having made its third revolution in the curve of an Ellipfis *; but as I found rather too much difference

[^2]
[15]

ference in fome other refpects, and efteemed the Obfervations of Apian and Kepler, who made them too inaccurate for clearing up fo fubtil a point; I was content on firft publifhing this Compendium in the Year 1705 , only to point out this as my opinion, fupported by fome degree of probability, and advifed pofterity to be ftrictly on the watch for its return, which I expected about the year 1758.

But he goes on and fays, that fince the firf publifhing the Compendium, he had found out a method of eafily and accurately computing the motions of Comets in any Ellipfis whatever: And that in turning over the Catalogues of ancient Comets, he had found three more preceding the others in the fame order and intervals; to wit, in 1305, about Eafter; in 1380, the month uncertain; and another in 1456, in the month of Fune; and this made him refume his former opinion with more confidence than formerly, fo that in the whole he had obtained a catalogue of fix Comets, which appeared in the years $1305,1380_{2}$ 1456, 1531, 607,1682 ; and being thus prepared, inftead of the parabolic Orbit which he had

As to what Carpenters, Mafons, and other artificers perform without the knowledge of any properties of Lines at all, it is from the rules that thinking men have laid them down, and which they are content to ufe on their faith, without pretending or being capable to examine into the truth of the demonftration, for many people can dexteroufly put in practice the inventions of others, if you will take the pains to inftruct them, tho' they fall fhort of a capacity to be inventors themfelves.
Now the computation of a Comet's motion in an Ellipfis was heretofore very difficult, which made Dr. Halley compute them as moving in the curves of Parabola's, therefore it was not ftrictly accurate on that account.

[16]

had attributed in his former table to the Comet of 1682, he fubftituted new Tables of an Elliptic one, and then try'd if Mr . Flamftead's Obfervations on this very Comet, and which were taken with a very large and accurate fextant, and duly cleared from refractions, would correfpond with his Theory.

Now it is manifeft by the Catalogue, that two periods of this Comet amount to 151 years nearly, and that they are alternately greater and lefs, the one of 56 , and the other of 55 years; afterwards applying this and other data, as directed by 15 Prop. Ift book of Nerwton's Principia, by the help of his new Tables, he finds, that on the 30 th of Auguft, 1682,

The place of this Comet according to his Theory was,
deg. \min. fec.
\(\left.\begin{array}{cccc}\left.\begin{array}{c}and according to a real

obfervation made by

Flamffead it was,\end{array}\right\}\end{array}\right\}\)| Libra | 15 | 35 | 5^{8} |
| :---: | :---: | :---: | :---: |
| Libra | 15 | 34 | 42 |

And its North Latitude according to his Theory was, deg. min. fec.
$17 \quad 24 \quad 4.2$
$\left.\begin{array}{l}\text { and by a real obfervation } \\ \text { made by Fiamfead }\end{array}\right\} \quad 17$ $\begin{array}{llll} & 24 & 46\end{array}$
Now the Difference between the computed and obferved places, is but $1^{\prime} 16^{\prime \prime}$, and that of their Latitudes only $45^{\prime \prime}$, which difference he thinks
deferves no regard, fince they may as well be attributed to errors in the Obfervations, as well as to thole of the Calculations: Arid Aftronomers feldom make left in their Theories of the primary Planets, which they have cultivated fur fo many years.

And in the fame manner he found his Theory agree with every one of Flamlead's Observations, except fuch trifling differences, of which he gives a Table.

Having thus far eftablifhed his Theory, he takes into confideration the course of the Comet in 1607, which preceded that of 1682, which Kepler and Longomontanus fay they observed; but though they were great Astronomers, they have tranfmitred too remiss a defcription, and not fufficiently exact for the prefent enquiry: But fuch as they have given are,

The Comet preceding that of 1682 ; to wit, in 1607, was observed by Kepler at Prague, the 16th of September that year, old file, at nine o' clock at night,
> and he eftimates its place, Leo 1830 and North Latitude
> $35 \frac{1}{2}$

But as the places of the fixed Stars are falsely defcribed in Tycho's Tables by forme miffake; when they are fet to rights, its apparent place at London, 5 I minutes part 1 in the morning was, deg. min. fec.

$$
\text { Leo } 21 \quad 49 \quad 00
$$

and at the fame time and place, according to Halley's Com- \} Leo
the difference of which places are but 6 minutes, 56 feconds.

And its North Latitude, as oblerved deg. min. fec.
by Kepler was, $\quad 36 \quad 120$
and by Halley's Computation $\quad 3^{6} \quad 20 \quad 4$ the difference of which Latitudes are 8 minutes 4 feconds.

And out of 12 different obfervations made by Kepler and others, when the undoubted errors in their obfervations are fet to rights, there is very little difference between them and Halley's Computations, and that difference which there is, the candid reader will eafly obferve is to be attributed for the mof part to the obfervations, which are not altogether congruous amongt themfelves.

As to the period of one of the Comet's revolutions exceeding the other by more than a year, he reminds the reader, that it is no more than what he has demonfrated in his Tables of the Planet Saturn, where one of that Planet's revolutions is I3 days longer than the other, and is the confequence of one of the Laws of Gravity explained by Nerwion: and this irregularity he fays, mult be abundantly greater in a Comet which emerges 4 times higher than Satura; and it is probable he fays, this irregularity which is not accurately known, may make the next expected return of this Comet fomething more than 76 years, and it may not be feen again till the end of the year 1758 , or beginning of 1759; but this he leaves to the difcuffion of poterity.

That the Comet obferved by Appian in I53I, which is next preceding that of 1607 , was the fame

[19]

fame as the other two, is pretty evident from the fituation of the Nodes, its Perihelion and Inclination which are not very different from the other two; but the imperfect obfervations made by him with a forall azimuth inftrument, whofe only ure was to hew the afcent of the Comet's tail in the parts oppofite the Sun, render all attempts to reduce thofe obfervations to accuracy ineffectual. However, that he would omit nothing, he with great trouble procured Appian's Book, intituled, Aftronomicon Cefareum, dedicated to the Emperor Cbarles V.

But as the Longitude of the fix'd Stars were very erroneoufly affign'd at that Time to what they are at prefent, if. the true ones are fubftituted, as likewife allowance made for the refractions, the places of that Comet were thus,

True place of Comet. deg. min. fec.
Auguf 13, 1531, $\left.\begin{array}{cccc}\text { Leo } & 20 & 16 & 0 \\ 23 & & \\ \text { Lilira } & 3 & 49 & 0\end{array}\right)$.

But according to Aptian's oblervations. deg. min. fec.

Augruf 13, 1531,	Leo	19	15	\bigcirc
23	Liéra	1	23	

Now tho' Appicn's places of the Comet differ from the true ones, on account of his ufing wrong Latitudes and Longitudes of the fixt Stars, and bad inftruments; yet the differences are not equal in all, but greater in fome, and lefs in others, which fhews they were not all equally accurate, for on the 13th of Auguft he differs but a degree, 1 minute from the truth, but on the 23d of Auguft he differs from the true place 2 degrees 26 minutes,

C 2
fo

[20]

fo that they differ among themfelves more than from the true obfervations, which makes it impoffible to reconcile fuch inconfiftences; however, tis fufficient to fhew that this Comet kept a tract very fimilar to that of 1682 , and if you make a little addition to the latitude, almoft the very fame.
As this Theory agrees with the real obfervations of three different Comets, made in 1531,1607, and 1687, it would be next to a miracle if three different Co mets fhould three times keep the fame tract, and more than a miracle if it were not the third revolution of the fame Comet, in an elliptic curve: If therefore he fays it appears again about the year 1758, impartial polterity munt needs allow this to be the difcovery of an Englifbman.

And this he fays is as it were the Mercury of Comets revolving round the Sun in the fmalleft Orbit, whilft others appear not again under the fpace of a hundred, and fome of many hundred years; at which time, arriving in the neighbourhood of the Sun, they thine with a greater luftre, and fend forth confpicuous tails, which are nothing but fubtle vapors exhaled from the body of the Comet by the intenfenefs of the Sun's heat, as fteam from water fet over the fire; but concerning this he refers to Newton according to his cuftom, arguing very forcibly at the end of the third book of his Principia, who therein, among other things, enters into the following fpeculation; to wit, that the earth (by furnihing fuch a quantity of moifture for the growth of vegetables, which when they wither become dry fubftances) would in a fufficient length of time be exhaufted, and left a hard and diy body, unlefs fupply'd by fome means or other: Now the tails of Comets, like
other vapors, dilate themfelves as they afcend, and confequently are fcattered through all the planetary regions, and from thence are gathered up by the Planets as they pafs thro' their Orbits, for they have a power to attract all bodies to them: Now thefe vapours, by entering into the atmofphere of the earth, my well be fuppofed to contribute to the renovation of all things, and in particular to fupply the diminution caufed in the humid parts of the earth by putrefaction and vegetation. So far are they from portending any mifchief to us, which the natural fears of men are fo apt to fuggeft, from the appearance of any thing ftrange or uncommon.

And that the tails of Comets have fome fuch important ufe is very reafonable, if we confider, that thefe bodies feem to be framed of a texture which purpofely difpofes them to fume in that fort, and that they do not merely emit thofe fumes or tails by their near approach to the Sun alone without any other confideration; for the earth is more than half the year at a lefs diftance from the Sun than either of the two Comets were, which appeaied in the years 1664 and 1665 , when they were neareft thereto; and the Comet of 1682 never approached the Sun above half fo near as AVercury did, and but very little nearer than Venus; yet all thofe Comets emitted tails, whereas both the Earth, Mercury and Venus were free from any fuch appearances.

The only objection that can be made againft this opinion, is the difficulty of explaining how a fufficient quantity of vapor can be raifed from the body of a Comet, to fill thofe vaft fpaces, through which their tails are fometimes extended.

Whan

[22]

Which Sir Ifaac Neroton removes by the following computation; and he finds, that a Globe of luch air as we breath in, which thall be only one inch in diameter, if it were carried up to the height but of one Semidiameter of the earth, would thereby become fo rarify'd, that it would fill all the planetary regions, even to the fphere of Saiurn, and far beyond: now as the tails of Comets are much higher, they may eafly be conceived to fill all that face they are feen to take up.

The only fcruple left is, how there tails can reflect light enough as to appear bright and hining, if they are compofed of fo thin a vapor as this computation implies; for the removal of which, Sir Ifaac Newton obferves, that the moft refulgent of thefe tails, hardly appears brighter than a beam of the Sun's light tranfmitted into a dark room thro' a hole of a fingle inch diameter, and that the fmalleft fix'd Stars are vifible thro' them without any fenfible diminution of their luftre.

All thefe confiderations put it beyond doubt what is the true nature of the tails of Comets; and as to what has been reported of the ftrange Chapes in which thofe tails have appeared, as no fuch thing has been recorded by Aftronomers, who, on the contrary, afcribe the fame likenefs to the tails of all Comets; he refers all thofe to accidental refractions, by intervening clouds, or to parts of the milky way contiguous to the Comets *.

And that the tails of Comets are vapors he further confirms from the following confiderations: Firf, the tails of Comets are but fmall, while they are at a great diftance from the Sun, but enlarge

[^3]
[23]

in proportion as they approach him, which fhews that the tail depends upon the degree of heat which the Comet receives from the Sun. Secondly, the tails of Comets are always oppofite the Sun, in the fame manner as fteam or fmoke afcends from the fire that produced it. Thirdly, the tails of Comets perfectly refemble the fmoke or vapor of a burning coal, for if the coal remains fixed, the fmoke afcends perpendicularly, but if the coal be in motion it afcends obliqueiv, and the different appearances of the heads of Comets, greatly confirm this opinion of their tails; for fmoke raifed by a ftrong heat is blacker and groffer than when raifed by a lefs; and accordingly the heads of Comets, having been more heated by the Sun, are lefs Chining than when they were lefs heated, juft as if they were then obfcured by fuch grofs fmoke.

Fourthly, thefe tails or vapors are likewife found to participate of another property of afcending vapor, which is, that when it afcends with the greateft velocity, it is leaft incurvated.

And laftly, from the very near approach to the Sun of the Comet of 1680, Sir Ifaac Newton draws another Speculation ; to wit, that fome people have heretofore fuggefted, tho' it be very difficult to prove, that the Sun, by a conftant emiffion of light and heat, does really diminifh; now fhould that be the cafe, yet might a Comet approach fo near its furface as to be attracted thereno, and thereby fupply any decreafe it may have hitherto undergone.

The reader will eafily perceive, that entering farther into this fubject would have engaged me in fuch fort of Calculations, as depend on principles the generality of people are unacquainted with,

$$
[24]
$$

and which has been avoided as much as poffible, thereby to render it intelligible to a greater number; I hall therefore take leave by obferving, that Sir Ifaac Neroton concludes hifs Wathematical Principles of Natural Philofophy, by giving his thoughts concerning the Deity, wherel he remarks, that the Similitude and Symmetry found in all the parts of the univerfe, make it undoubted that the whole is governed by one Supream Being, to whom is owing the Original of the frame of Nature, which evidently is the effect of choice and defigh, and stating briefly the Metaphhyfical Notions of God, he concludes, that the Deity muft neceffarily be both immenfe and Eternal.

$$
F I N I S
$$

L^{2}

(

[^0]: * Regiomontanus, a German Aftronomer ; he abridged Ptolomy's Almageftum, he found many material Errors in the Tranflation of it, by George of Trebizond, and being made Archbifhop of Ratijbon, and coming to Rome to reform the Calendar, he was killed by George of Trebizonde's Son, Anno 1476, others fay he died of the Plague, aged 40 .

[^1]: * Hevelius, Burgo Mafter of Dantzic, he difcovered a great many Stars, which he calls Sobiefki's Firmament, in honor of Foln III. king of Poland: He died in 1688, aged 76.
 + Cafini Foln Dominic, was born in the county of Nice, in 1625, and being taken notice of by Colbert, chief minifter to Lewis XIV. became one of the greateft Aftronomers of his time: He died in 1712.
 § Fobn Flamfead, born at Derby, Auguf 19, 1646; he went to Cambridge, entered a ftudent of Fefus College there, and became acquainted

[^2]: * If a ftrait line of what length you pleafe be a little bent, it will thereby become what Geometricians call part of an Hy perbola; bend it a little more, and it will thereby become part of a Parabola; bend it a third time, and it will become part of an Ellipfis; bend it ftill more, and in this laft degree of curvature it will be part of a Circle: Now thefe crooked lines, according as they are more or lefs bent, ferve for folving different Problems, for what you may perform by the help of one could never have been refolved by the other: For inftance, a man who underftands the properties of a Circle would eafily make a fquare floor, or any other furface double or treble, \&c. any other you pleafe. Yet without the knowledge of the properties of a Parabola, he would never be able to increafe or diminifh, in any proportion, a folid ftone pediment called a cube or die.

[^3]: * Thefe arguments are laid down Phil. Princip. of Natural Philofophy, Page 509, to 517 .

